Stability and instability in saddle point dynamics Part II: The subgradient method

نویسندگان

  • Thomas Holding
  • Ioannis Lestas
چکیده

In part I we considered the problem of convergence to a saddle point of a concave-convex function via gradient dynamics and an exact characterization was given to their asymptotic behaviour. In part II we consider a general class of subgradient dynamics that provide a restriction in an arbitrary convex domain. We show that despite the nonlinear and nonsmooth character of these dynamics their ω-limit set is comprised of solutions to only linear ODEs. In particular, we show that the latter are solutions to subgradient dynamics on affine subspaces which is a smooth class of dynamics the asymptotic properties of which have been exactly characterized in part I. Various convergence criteria are formulated using these results and several examples and applications are also discussed throughout the manuscript.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and instability in saddle point dynamics - Part I

We consider the problem of convergence to a saddle point of a concave-convex function via gradient dynamics. Since first introduced by Arrow, Hurwicz and Uzawa in [1] such dynamics have been extensively used in diverse areas, there are, however, features that render their analysis non trivial. These include the lack of convergence guarantees when the function considered is not strictly concave-...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

Shrinking Dimer Dynamics and Its Applications to Saddle Point Search

Saddle point search on an energy surface has broad applications in fields like materials science, physics, chemistry, and biology. In this paper, we present the shrinking dimer dynamics (SDD), a dynamic system which can be applied to locate a transition state on an energy surface corresponding to an index-1 saddle point where the Hessian has a negative eigenvalue. By searching for the saddle po...

متن کامل

Subgradient Methods for Saddle-Point Problems

We consider computing the saddle points of a convex-concave function using subgradient methods. The existing literature on finding saddle points has mainly focused on establishing convergence properties of the generated iterates under some restrictive assumptions. In this paper, we propose a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rat...

متن کامل

On the convergence of conditional epsilon-subgradient methods for convex programs and convex-concave saddle-point problems

The paper provides two contributions. First, we present new convergence results for conditional e-subgradient algorithms for general convex programs. The results obtained here extend the classical ones by Polyak [Sov. Math. Doklady 8 (1967) 593; USSR Comput. Math. Math. Phys. 9 (1969) 14; Introduction to Optimization, Optimization Software, New York, 1987] as well as the recent ones in [Math. P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.07351  شماره 

صفحات  -

تاریخ انتشار 2017